
JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

Håck ma's Castle, 2024-08-29 20:00 (UTC+2), Schloss Ottenschlag

Univ.-Prof. Dr. René Mayrhofer
Institute of Networks and Security, LIT Secure and Correct Systems Lab & CDL Digidow

Secure Messaging
(and current attacks against it)

So you are concerned about bad
content in social media /

messenger apps?

Are you also concerned about
“bad” content communicated

in private, face-to-face?

The definition of “bad”
depends on the policy of the
day, and can change quickly

with (or without) a single
election...

Which data can we extract from
their network communication?

Traces through Xitter, Instagram, WeChat, etc.

Alice Bob

Internet ServerLorem
ipsum

…

Lorem
ipsum

…

Lorem
ipsum

…

(Even more) traces through Facebook, Xitter, etc.

Alice Bob

FacebookLorem
ipsum

…

Lorem
ipsum

…

Lorem
ipsum

…

Eve
Dave

Chuck

(Even more) traces through Facebook, Xitter, etc.

Alice Bob

Facebook

Webserver 1

Webserver 2

Webserver 3

Alice visits Webpage 1 at …
Webpage 2 at …
Webpage 3 at …
… had a location fix at …

Traces through Snapchat, WhatsApp, etc.

Alice Bob

Snapchat
Server

Lorem
ipsum

…

10

Lorem
ipsum

…

10

Lorem
ipsum

…

10

Traces through Signal, Wire, Threema, etc.:
End-to-End Encryption (E2EE)

TeshFio
wtaf1Je

chUdi

Alice Bob

Internet-ServerLorem
ipsum

…

Lorem
ipsum

…

TeshFio
wtaf1Je

chUdi

TeshFio
wtaf1Je

chUdi

Encryption: symmetric

Plain Text

Encryption

Decryption

Chiffre Text

Secret Key

Random
Numbers

Encryption: asymmetric

Plain Text

Public Key

Private Key

Encryption

Decryption

Key Generation

Trapdoor
Function

Chiffre Text
Random
Numbers

Encryption: hybrid (partially b/c of performance)

Plain Text

Private Key

S Encryption

S Decryption

Chiffre Text

S Keytmp

Public Key

P Encryption

P DecryptionS Keytmp

S
 Key

tm
p

Random
Numbers

Encryption:
Signal Protocol Double Ratchet

https://signal.org/docs/specifications/doubleratchet/

16

■ Content (= data) is well protected by Signal protocol double-ratched and IETF MLS
□ Signal
□ Wire (MLS, mostly)
□ Android Messages over RCS (and maybe iMessage interop, at some point...?)
□ WhatsApp (presumably, but closed source…)
□ Threema (neither Signal nor MLS, but considered mostly ok)
□ Matrix with Olm/MegOlm (but some concerns about protocol implementations)
□ NOT: Telegram

■ Metadata is generally not protected
□ Who sends to whom, which kinds of messages, how many, how often, when, …
□ Who is a member of which group(s), …
□ “We kill people based on metadata” (General Michael Hayden, former director of the NSA and the CIA)

Data vs. meta data

Ok, network based content
extraction is hard…

Can we just scan the endpoints
(=apps) for plaintext messages?

18

Context: The Android ecosystem

Image credit: Google

19

Goal for the Android ecosystem: Keep people safe

“Make things so secure we’re not needed anymore.”
— The Android platform security team

20

■ Adversaries can get physical access to Android devices (lost, stolen, borrowed, etc.)
□ Physical proximity
□ Powered off
□ Screen locked
□ Screen unlocked by different user

■ Network communication and sensor data are untrusted
□ Passive eavesdropping
□ Active On-Path Attacker (OPA) / MITM

■ Untrusted code is executed on the device
□ Includes all forms of OS/app API abuse
□ Includes misdirection, deception, etc. through UI

■ Untrusted content is processed by the device

■ New: Insiders can get access to signing keys

The Android Platform Security Model: Threat Model

[R. Mayrhofer, J. Vander Stoep, C. Brubaker, N. Kralevich. “The Android Platform Security Model‘, ACM Transactions on Privacy and Security (TOPS),
vol. 24, no. 3, Article 19 (August 2021), https://doi.org/10.1145/3448609, previous and future versions at arXiv:1904.05572, April 2019 and later]

https://doi.org/10.1145/3448609
https://arxiv.org/abs/1904.05572

21

The Android Platform Security Model: Rules

■ Rule 1: Multi-party consent
Users

App
Developer Platform

Image credit: Google

[R. Mayrhofer, J. Vander Stoep, C. Brubaker, N. Kralevich. “The Android Platform Security Model‘, ACM Transactions on Privacy and Security (TOPS),
vol. 24, no. 3, Article 19 (August 2021), https://doi.org/10.1145/3448609, previous and future versions at arXiv:1904.05572, April 2019 and later]

https://doi.org/10.1145/3448609
https://arxiv.org/abs/1904.05572

22

The Android Platform Security Model: Rules

■ Rule 2: Open ecosystem access

■ Rule 3: Security is a compatibility requirement

■ Rule 4: Factory reset restores the device to a safe state

■ Rule 5: Applications are security principals

[R. Mayrhofer, J. Vander Stoep, C. Brubaker, N. Kralevich. “The Android Platform Security Model‘, ACM Transactions on Privacy and Security (TOPS),
vol. 24, no. 3, Article 19 (August 2021), https://doi.org/10.1145/3448609, previous and future versions at arXiv:1904.05572, April 2019 and later]

https://doi.org/10.1145/3448609
https://arxiv.org/abs/1904.05572

23

■ Applications must be signed for installation
□ May be self-signed by the developer, therefore no strict requirement for centralized

application Q/A or control (Google Play Signing manages keys for developers)
□ Signature supports non-repudiability (if the public key/certificate is known)
□ Signature by same private key allows applications to share data and files
□ Automatic application updates possible when signed by same private key

■ Otherwise, open eco-system
□ Users may install arbitrary applications (directly from APK files or from different markets)
□ Apps can be written in any language
□ DRM and application copy protection available (Android 2.2 and newer market/PAI API),

but optional

Android app security principles

[R. Mayrhofer, J. Vander Stoep, C. Brubaker, N. Kralevich. “The Android Platform Security Model‘, ACM Transactions on Privacy and Security (TOPS),
vol. 24, no. 3, Article 19 (August 2021), https://doi.org/10.1145/3448609, previous and future versions at arXiv:1904.05572, April 2019 and later]

https://doi.org/10.1145/3448609
https://arxiv.org/abs/1904.05572

24

Upon installation, package manager creates a dynamic user ID for each application
 ⇒ Application sandbox

■ All application files and processes are restricted to this UID

■ Enforced by Linux kernel and therefore same restrictions for all code (Java + native)

■ Starting with Android 4.4 (introduced in 4.3 with permissive mode, 4.4 switches to
enforcing), augmented with SELinux policy for kernel level mandatory access control
(MAC)

■ By default, even the user and debugging shells are restricted to a special UID (SHELL)

■ Permissions granted at installation time allow to call services outside the application
sandbox

“rooting” to gain “root” access (super user / system level access on UNIX without further
restrictions, but may be limited by SELinux MAC)

Android security architecture

[R. Mayrhofer, J. Vander Stoep, C. Brubaker, N. Kralevich. “The Android Platform Security Model‘, ACM Transactions on Privacy and Security (TOPS),
vol. 24, no. 3, Article 19 (August 2021), https://doi.org/10.1145/3448609, previous and future versions at arXiv:1904.05572, April 2019 and later]

https://doi.org/10.1145/3448609
https://arxiv.org/abs/1904.05572

25

Android security boundaries
Android sandbox has two main layers of permissions models
■ File system entries and some other kernel resources

□ Enforced by DAC (standard filesystem permissions) and in newer versions MAC
(SELinux) ⇒ enforced on kernel level

□ Very restrictive compared to standard Linux distributions (or Windows, MacOS, ...)
□ Android ID (AID) is used as both UID (user ID, for installed applications) and GID (group

ID, for accessing resources)
□ Commonly referred to as “Android sandbox” (although this is not the full picture)

■ Permissions on API calls
□ Enforced by DalvikVM/ART and Android framework/libraries, as well as specific apps
□ Allow bridging the security boundary created by the first layer enforced by kernel sandbox

■ Plus other mechanisms for specific purpose (e.g. Linux capabilities and seccomp filters)
For interplay between DAC, MAC, and CAP see e.g. [Hernandez et al.: “BigMAC: Fine-Grained Policy Analysis of Android Firmware”,
USENIX Security 2020], online at https://www.usenix.org/conference/usenixsecurity20/presentation/hernandez

[R. Mayrhofer, J. Vander Stoep, C. Brubaker, N. Kralevich. “The Android Platform Security Model‘, ACM Transactions on Privacy and Security (TOPS),
vol. 24, no. 3, Article 19 (August 2021), https://doi.org/10.1145/3448609, previous and future versions at arXiv:1904.05572, April 2019 and later]

https://www.usenix.org/conference/usenixsecurity20/presentation/hernandez
https://doi.org/10.1145/3448609
https://arxiv.org/abs/1904.05572

Ok, one app cannot simply scan
another app’s data...

How do we get (OS) level
privileges to override the

sandbox?

28

Overriding app sandbox: different options
■ Change OS image to get your own app into privileged level

□ Exploit vulnerability in OS (or the respective app)

30

Why exploiting OS vulnerabilities is not
a good long-term plan
■ Need to use publicly unreported bugs

□ Known bugs are “quickly” fixes by vendors
□ Need a constant stream of “new” unknown exploits
□ Fundamental mitigations get better over time → exploitability is measurably reduced
□ This is expensive!

■ “NOBUS - nobody but us” is an illusion
□ Experience shows that the same vulnerabilities are found by different teams
□ Need to assume unreported bugs are also exploited for other malicious reasons
□ Not reporting them leaves the public open to attacks!

■ The gray/black market of zero-day exploits is nasty
□ Can you really write all your own exploits? No? Go and buy them on the market!
□ Some political regimes use the same attacks against the opposition, journalists, …
□ Organized crime uses the same attacks for their purposes

→ Public tax money funds criminal and politically unethical activities!

31

Overriding app sandbox: different options
■ Change OS image to get your own app into privileged level

□ Exploit vulnerability in OS (or the respective app)
□ Modify base image

● with local physical access, unlocked bootloader, reflashing tampered image

32

■ All Android apps (system and user-installed) must be signed
□ Typically, firmware updates are also signed by OEM, boot loader may only allow to flash

and/or boot “correctly” signed images
□ Recovery mode often applies only updates signed by same OEM
□ Newer Android versions verify signatures during boot and run-time (dm-verity)

■ Signing is done with private keys held by developers / organizations, public keys embedded
in individual apps, system image, and/or in boot loader for image signatures
□ All the way down to the Android Verified Boot (AVB) chain

■ Signing key types:
□ Individual developer keys (self-signed) for apps
□ platform, shared, media and testkey in AOSP tree

● platform is used for “core” Android components with elevated privileges
□ releasekey for release type image builds, must by kept private
□ More details at https://source.android.com/devices/tech/ota/sign_builds.html

Android code signing

https://source.android.com/devices/tech/ota/sign_builds.html

34

Overriding app sandbox: different options
■ Change OS image to get your own app into privileged level

□ Exploit vulnerability in OS (or the respective app)
□ Modify base image

● with local physical access, unlocked bootloader, reflashing tampered image
● through over-the-air upgrade (compelling OEM to create a targeted version)

35

Pixel Binary
Transparency Log

https://security.googleblog.com/2023/08/pixel-binary-transparency-verifiable.html

36

Overriding app sandbox: different options
■ Change OS image to get your own app into privileged level

□ Exploit vulnerability in OS (or the respective app)
□ Modify base image

● with local physical access, unlocked bootloader, reflashing tampered image
● through over-the-air upgrade (compelling OEM to create a targeted version)

■ Read plaintext data directly from physical device
□ Device is switched on

37

User authentication (to their own devices)
■ On most mobile devices, the “lock screen” is the primary method of authentication

■ (Mostly) binary distinction: locked or unlocked
□ some nuance with notifications and other information on lock screen
□ some functions can be used on locked phones (e.g. camera or emergency call)

■ Can integrate with key management (Keymint / StrongBox)

■ But implemented by Android user space cannot defend against root adversaries ⇒
(Exception: authentication-bound keys imply that authentication state is verified in TEE and
passed directly to Keymint in TEE and therefore resistant to root adversaries)

39

Overriding app sandbox: different options
■ Change OS image to get your own app into privileged level

□ Exploit vulnerability in OS (or the respective app)
□ Modify base image

● with local physical access, unlocked bootloader, reflashing tampered image
● through over-the-air upgrade (compelling OEM to create a targeted version)

■ Read plaintext data directly from physical device
□ Device is switched on
□ Device is switched off

40

On-device encryption
■ Android 5.0 introduced Full Disk Encryption (FDE)

□ Entangled with user knowledge factor (PIN/password), but can potentially be disabled
(then encryption key only depends on device-unique key kept in TrustZone)

□ Full data partition encrypted with same key, including meta data (e.g. file names)
□ All user accounts and profiles encrypted with same key
□ Most system functions inaccessible until knowledge factor entered during reboot

■ Android 7.0 introduced File Based Encryption (FBE)
□ Different keys per users/profiles
□ Difference between “device encrypted” (DE, only bound to unique device key) and

“credential encrypted” (CE, entangled with user knowledge factor)
□ Apps that are marked to use DE data storage can function after reboot before first unlock
□ Android 9 added meta data encryption
□ Android 10 made FBE mandatory for all new devices
□ Android 11 introduced Resume-on-Reboot

42

Overriding app sandbox: different options
■ Change OS image to get your own app into privileged level

□ Exploit vulnerability in OS (or the respective app)
□ Modify base image

● with local physical access, unlocked bootloader, reflashing tampered image
● through over-the-air upgrade (compelling OEM to create a targeted version)

■ Read plaintext data directly from physical device
□ Device is switched on
□ Device is switched off

43

Android-Device-Security.org:
First lab at JKU Linz
■ 27 different devices so far

□ Focus on European market, 9 different OEMs
□ Low-end, mid range, and flagship devices
□ Unmodified, stock system images

■ Controlled through ADB
□ Reading system properties, list of apps, etc.
□ Installing test apps, collecting results
□ Daily reboot to force applying updates

■ Connected through custom WiFi access point
□ One VLAN per device (selected by 802.1x)
□ Allows tracking all network traffic including

layer 2 addresses (MAC randomization)

■ Looking for collaboration with more labs

Ok, we can’t scan app content
from another app, but can we

force the app to do its
own scanning?

45

Letting apps do their own scanning:
Client-Side Scanning (CSS)
■ Can legally compel apps to implement scanning inside the app

□ Has access to plaintext messages and all media
□ Proprietary apps can implement a mandated secret filter

● with our without enforced automatic reporting

■ Technical challenges
□ Filter has non-negligible error rate

● Many, many, many false positives to be expected
□ Keeping filter secret → even if non-extractable (which is hard), can use as oracle

● Training input recovery is a thing with more complex filter models → CSAM material???
□ No way to technically enforce on all apps → take e.g. Signal source code, compile

without filter, use within organized crime group
□ Added complexity → added attack surface for app

■ Legal challenges
□ Mass surveillance “pre-crime” scanning
□ Self censorship based on existence of filter

See also https://www.ins.jku.at/chatcontrol/

https://www.ins.jku.at/chatcontrol/

What is AI?
Better describe as Machine Learning (ML)

Specific algorithms programmed
by domain experts DecisionInput data

Deep Learning

Machine Learning

What is AI?
Better describe as Machine Learning (ML)

Training and
test data

Feature
Extraction

Feature
Selection

Classification /
Prediction DecisionInput data

Training /
Optimization

ML at Facebook, Xitter, etc.

Alice Bob

FacebookLorem
ipsum

…

Lorem
ipsum

…

Lorem
ipsum

…

Eve
Dave

Chuck

Training and
test data

Webserver 1

Webserver 2

Webserver 3

Possible data leaks when using ML

Training and
test data

Feature
Extraction

Feature
Selection

Classification /
Prediction DecisionInput data

Training /
Optimization

Data leak: direct or indirect through correlation with other data sources

https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

ML at Facebook, Xitter, etc.

Alice Bob

FacebookLorem
ipsum

…

Lorem
ipsum

…

Lorem
ipsum

…

Eve
Dave

Chuck

Training and
test data

Webserver 1

Webserver 2

Webserver 3

ML

ML

Possible attacks when using ML

Training and
test data

Feature
Extraction

Feature
Selection

Classification /
Prediction DecisionInput data

Training /
Optimization

Ok, client side scanning (with or
without ML) is tricky, how about
some other security whatever

thingy?

Blockchain for Social Media / ML Security?

Do you need a Blockchain?

Source: K. Wüst and A. Gervais, "Do you Need a Blockchain?," 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), 2018, pp. 45-54, doi: 10.1109/CVCBT.2018.00011, also online as https://eprint.iacr.org/2017/375.pdf

https://eprint.iacr.org/2017/375.pdf

JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

Web: https://ins.jku.at
Email: rm@ins.jku.at Twitter: @rene_mobile
Signal: Rene.02 Mastodon: @rene_mobile@infosec.exchange

Questions?

