
René Mayrhofer
Institute of Networks and Security

Anonymously Publishing
Liveness Signals
with Plausible Deniability

Michael Sonntag, René Mayrhofer, Stefan Rass

2

Problem statement

Dall-E with prompt “A picture of a brave woman blowing a whistle while holding up a document folder in film noir style”

3

Problem statement
 Persons might want to prove (“Prover”) to others (“Verifier”) that

they are still alive & well (“Signal” received)
 E.g. whistleblowers; to keep a “security package” stashed with

third parties from being published
 If you want/need such a scheme, you implicitly want to remain

anonymous – and in case of suspicion be able to deny it
 “I am not a whistleblower” (who would be sent to jail)
 “I am not a ‘verifier’ with a package” (who would have to relinquish

the package – and maybe go to jail too – participation/help/…)
 Even if the other party is discovered, all devices are obtained &

analyzed, and the person (made to) cooperate, you should still be
able to disclaim any participation

 We developed and implemented a protocol to support this:
 Proving “liveness” + plausible deniability
 Not included: data communication, security package etc.

4

Solution outline [1]
 Store “Signal” on a third-party server, so communication is

completely asynchronous → no correlation attacks
 Communication should be explainable as “normal usage”, too

 Use Tor & Onion services to hide participants
 Large foreign public Onion services (= Signal storage) preferable
 Querying non-existing signals: random generation

 Roles are symmetrical regarding stored data
 Each one can claim to be the other (if desirable)

 No identical data stored at participants
 Exception: a single shared secret kept in (human) memory
 Prover: nothing related found at Verifier, even if all secrets (incl.

shared one) are disclosed correctly
 Verifier: vice versa
 Both: Lying about anything provides valid values indistinguishable

from those based on correct disclosure

5

Solution outline [2]
 No danger from attackers for storage server

 Proof of Work for querying and submission (DoS prevention)
 No DoS regarding signals or protocol; requires only limited storage

 No registration, payment, etc. needed
 A “key” is used to distinguish multiple provers on a single server

 Derived from the same values; properties as before
 Signals may be missed: participants can calculate/verify forward, but

not backwards
 Based on a hash chain → no reversing (computational limits)
 The prover can stop calculation early to create “old” keys/signals,

but that doesn’t help with identifying/proving a verifier
 After a freely set number of missed signals the verifier considers

the prover “dead” → can delete data, publish security package, ...
 And should stop verification attempts!

6

Prover side

7

Verifier side

8

 Prover & Verifier:
 Onion address of storage server(s): public site, human memory, …
 Shared secret (human memory only)

 Prover:
 Prover secret (human memory only) for signal/key generation
 Number of the next signal

 Or some method of deriving it, e.g. starting time + current date/time
 Arbitrary data looking like current key generation/verification data

 Verifier:
 Verifier secret (human memory only)
 Current key generation data

 Encrypted via XOR with data derived from verifier secret and verification
data during storage & ratcheted forward after each sending

 Verification data for verifying the next signal value
 Onion service operator: Map[Key → Signal]

Data “stored” by participants

Single hash value each

9

Exemplary implementation

10

 Same Android app for Prover & Verifier:
 Default onion address for storage server (run by INS at JKU)
 App secret specific to each user, used for local storage encryption
 Shared secret (human memory only) for signal creation+verification

Exemplary implementation

11

Exemplary implementation

12

 Same Android app for Prover & Verifier:
 Default onion address for storage server (run by INS at JKU)
 App secret specific to each user, used for local storage encryption
 Shared secret (human memory only) for signal creation+verification

 Synchronizing Prover & Verifier:
 One-time initial synchronization, assisted by displaying a QRcode

at Prover and scanning with Verifier
 After that first synchronization, completely asynchronous

communication through the Onion service
 Core cryptographic protocol implemented in Java-only library

 Minor dependencies (mostly logging)
 Can be easily used in other apps, e.g. standard news organizations

apps with integrated messaging functionality

Exemplary implementation

13

Plausible deniability achieved? [1]
 Prover cooperates and discloses prover and shared secret

 Future keys and signals can be calculated
→ Prover can be impersonated

 None of that data is found at the verifier on any device, neither the
shared secret nor any of the future key or verification data

 Calculating older keys does not help, as servers do not store
when/whether the data was retrieved – and would they, this would
not help either with identifying/proving a Verifier because of Tor

 Lying about the shared secret produces valid values that can be
stored (but will not validate); previous ones (allegedly published in
the past) are no longer stored by the server and enumeration by
attacker in advance is impossible

 Correlation attacks can be performed, but require cooperation of
the storage server → pre-calculate the key and wait for check(s)

14

Plausible deniability achieved? [2]
 Prover can claim to be a verifier: With an invented (or correct) shared

secret signals can be successfully retrieved, but none will validate
 Some delay required to convincingly tell “prover is already dead”
 Old signals cannot be generated, so it is impossible to prove that

there never was a valid signal
 Verifier: Situation is symmetric

 Verifier can be impersonated if disclosing all values
 Verifying liveness becomes possible for the attacker

 No help identifying/proving the Prover
 No matching data found there; no access to previous keys or signals

as this would require reversing the hash function
 Verifier could claim to be a prover: that no one verifies this could

only be proven together with the storage server & if quick
 Or prover would already consider him dead and checks no longer

15

Summary
 We provide a scheme to prove a “recent activity” by “someone

knowing a shared secret”
 But without the ability for attackers to identify any participant,

knowing such a scheme is going on, and even if all (other) partici-
pants cooperate fully, the last one can still deny involvement
 Or claim a different role, if desirable

 Open problems:
 Separate app needed: integration (tiny part) into a widely-used

app would remove this sign of participation
 Alternative: Download JavaScript from trusted website and calculate

locally; difficult to verify this is secure (unchanged code); requires lots
of trust in the site

 Third party needed for storage
 Load is low: practically no computational effort required
 Storage: 1 attacker doing 24/7 nothing else: ≈ 15 MB storage

JOHANNES KEPLER
UNIVERSITÄT LINZ
Altenberger Straße 69
4040 Linz, Österreich
www.jku.at

Questions?

Michael Sonntag
michael.sonntag@ins.jku.at
+43 (732) 2468 - 4137
S3 235 (Science park 3, 2nd floor)

https://www.ins.jku.atTHANK YOU FOR
YOUR ATTENTION!

	Anonymously Publishing Liveness Signals with Plausible Deniabil
	Problem statement
	Problem statement (2)
	Solution outline [1]
	Solution outline [2]
	Prover side
	Verifier side
	Data “stored” by participants
	Exemplary implementation
	Exemplary implementation (2)
	Exemplary implementation (3)
	Exemplary implementation (4)
	Plausible deniability achieved? [1]
	Plausible deniability achieved? [2]
	Summary
	Thank you for your attention!

