Face to Face with Efficiency: Real-Time Face Recognition Pipelines on Embedded Devices

Abstract

While real-time face recognition has become increasingly popular, its use in decentralized systems and on embedded hardware presents numerous challenges. One challenge is the trade-off between accuracy and inference-time on constrained hardware resources. While achieving higher accuracy is desirable, it comes at the cost of longer inference-time. We first conduct a comparative study on the effect of using different face recognition distance functions and introduce a novel inference-time/accuracy plot to facilitate the comparison of different face recognition models. Every application must strike a balance between inference-time and accuracy, depending on its focus. To achieve optimal performance across the spectrum, we propose a combination of multiple models with distinct characteristics. This allows the system to address the weaknesses of individual models and to optimize performance based on the specific needs of the application.

Publication
Proc. MoMM 2023: Advances in Mobile Computing and Multimedia Intelligence