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Abstract— Authenticating spontaneous interactions between
devices and users is challenging for several reasons: the wireless
(and therefore invisible) nature of device communication, the
heterogeneous nature of devices and lack of appropriate user
interfaces in mobile devices, and the requirement for unobtrusive
user interaction. The most promising approach that has been pro-
posed in literature involves the exploitation of so-called auxiliary
channels for authentication to bridge the gap between usability
and security. This concept has spawned the independent develop-
ment of various authentication methods and research prototypes,
that, unfortunately, remain hard to compare and interchange
and are rarely available to potential application developers. We
present a novel, unified cryptographic authentication protocol
framework (UACAP) to unify these approaches on using auxiliary
channels and analyze its security properties. This protocol and a
selection of auxiliary channels aimed at authentication of mobile
devices has been implemented and released in an open source
ubiquitous authentication toolkit (OpenUAT). We also present an
initial user study evaluating four of these channels.

Index Terms— C.2.1 Network Architecture and
Design/Wireless Communication, D.4.6.b  Security and
Protection/Authentication, H4 Information Systems

Applications/Miscellaneous, C.2.8.a Algorithm/protocol design
and analysis, C.3.h Ubiquitous computing, C.2.8.d Mobile
environments, H.2.b Human-centred computing, J.9 Mobile
Applications

I. INTRODUCTION

Security in Ubiquitous Computing is currently a hot topic;
as many research projects mature and their core findings start
to influence real-world applications, non-functional requirements
become increasingly more important. Security is one of the most
important among these non-functional requirements and is a
prerequisite to wide deployment Using standard cryptographic
approaches, many security requirements — for example confiden-
tiality, integrity, non-repudiability, auditability, or access control
— can be fulfilled once all involved parties have been successfully
authenticated. Authentication is therefore the key requirement to
secure any interaction. Within the vision of ubiquitous computing,
this is a particularly challenging task mostly due to three main
reasons: (1) wireless communication channels are insecure, (2)
many devices lack sufficiently capable user interfaces, and (3)
user attention does not scale. One commonly cited example is
the serendipitous use of available infrastructure such as printers
or projectors (which typically do not offer any directly accessible

Some material presented in this paper previously appeared in a habilitation
thesis [[1] and a technical report [2].

!Unfortunately, this is often neglected and product manufacturers as well
as standardisation bodies often try to retrofit security measures onto otherwise
completed projects. The recent track record shows that this procedure is clearly
unsuccessful in producing secure systems.

user input method and are under different administrative control)
from mobile devices such as mobile phones (which offer some
input method that is often difficult, erroneous, or annoying for
longer input, but are trusted personal devices), being connected
via untrusted wireless links (such as an open guest WLAN).

These problems have, over the past years, spawned the develop-
ment of different authentication methods for specific application
areas (e.g. [3[|-[[15]). However, most of these efforts are still
separate and thus difficult to compare and not interchangeable.
Actual implementations are often unavailable or otherwise re-
stricted to specific, prototypical demonstration applications. This
hinders both additional research on authentication methods for
ubiquitous computing and application developers using those
that have already been suggested. Furthermore, usability studies
have shown that no one single device pairing method can be
satisfactory for all users in all situations. Users prefer different
methods in different situations, depending on the data they want
to exchange, type of device they connect to, and the person
operating the other device [[16]. We therefore propose a unified
basis for comparable and interchangeable protocols and a library
of ready-made implementations aimed at deployment outside of
research projects. To this end, we previously suggested to develop
an open source toolkit implementing some of these methods with
a common structure [17].

We use the following application scenarios as motivating ex-
amples that illustrate different potential use-cases for our system.
In all these cases, selecting the intended communication partner is
a major issue, with potentially tens of different wireless networks
and hundreds of unknown devices in these networks. Depending
on the lifetime of the keys exchanged, we distinguish short-
lived associations (ephemeral “one-shot” keys, used just once)
and long-lived pairings (keys are stored and reused for future
communication between the devices).

1) Exchanging vCards and PGP keys: Alice and Bob meet
at a conference and wish to exchange contact information
(vCards) and PGP keys for future remote communication.
This exchange is short-lived, as their mobile phones are
unlikely to directly communicate again. A specific issue
is spontaneous authentication with severely limited user
interfaces and highly personal devices that users might not
wish to hand over.

2) Printing a confidential document on a Bluetooth printer:
Alice is in the airport and wishes to use the printer in
her waiting lounge to print multiple parts of a confidential
report saved on her phone. Keys may be reused for printing
separate documents after initial establishment. A specific
issue is selecting the “correct” printer in a list of similar
ones.

3) Connecting a mobile phone to a Wi-Fi router: While visiting
his friend’s house, Bob wishes to check his email. He
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connects his smart phone to his friend’s wireless LAN.
Keys may be long-lived to be reused on future visits, but
authorisation may be limited to the actual visits. A specific
issue is that the wireless access point might not be directly
accessible.

4) Temporarily pairing a mobile phone and Bluetooth headset:

Alice wishes to talk on the phone while driving and borrows
a Bluetooth headset to make a single call. Keys are short-
term, because she returns the headset after use. A specific
issues is that a headset typically has no user interface other
than a single button (and audio).

5) Permanently pairing a mobile phone and Bluetooth headset:

Alice wishes to listen to music using her mobile phone and
a stereo Bluetooth headset.

In this article, we present a Unified Auxiliary Channel Au-
thentication Protocol (UACAP) that can be used to securely pair
heterogeneous devices and/or services with limited input/output
capabilites (such as mobile phones and infrastructure components)
by relying on diverse auxiliary channels. We also release a specific
implementation in the form of the Open source Ubiquitous
Authentication Toolkit (OpenUAT). The main contributions are:

e We propose a unification of previously suggested, originally
separate protocols into a common protocol framework that
is configurable towards the specific security properties of
the chosen auxiliary channel (Section [I). A reference
implementation of UACAP uses arbitrary wireless (in-band)
channels and an ASCII-based protocol specification (Sec-
tion [V).

e We further identify three main categories of auxiliary
channels (input, transfer, and verification) with sub-
categories concerning channel capabilities (confidential vs.
non-confidential and short vs. long in terms of channel
bandwidth) as the basis for classifying auxiliary channels
both from a user interaction and a security point of view
(Section [[I). This classification informs the different options
for UACAP and may help application designers select ap-
propriate channels according to their user interaction model
and security requirements. A few specific auxiliary channels
from different categories have been implemented in proto-
typical form (Section [V)).

e Based on these auxiliary channel categories and previous
work on manual authentication protocols, we provide a
security analysis of UACAP and show that it is secure against
currently known attack scenarios under standard assumptions
on wireless and auxiliary channels (Section [[V).

II. RELATED WORK

Over the last few years, different cryptographic protocols
for multi-channel authentication have been proposed (e.g. [[18]-
[25]). Most of them have in common that they assume a main
wireless communication channel and a more restricted, so-called
auxiliary or out-of-band channel. While the main channel has
— in terms of cryptographic key exchange — practically unlim-
ited bandwidth, the auxiliary channel is often limited to either
short messages or slow and/or obtrusive transfer. Consequently,
different cryptographic protocols have been developed to exploit
these diverse characteristics for the purpose of secure authen-
tication between devices, users, and services (a good summary
of the most important protocol proposals can be found in [19]).
However, this diversification of protocols means that they are not

easily interchangeable and that security analysis need to be done
for each of them. In the present paper, for the first time, we
contribute a unified protocol that can exploit any combination of
security guarantees from arbitrary auxiliary channels. UACAP is
a unification of some of the recently proposed protocols, retaining
their security properties with a minimal number of messages.

A considerable amount of prior work on using auxiliary chan-
nels to establish shared secret keys between two (or multiple)
devices has been presented. The “resurrecting duckling” as a
pairing model suggested direct electrical contact [26], while
“constrained channels” [27]] and “location-limited channels” [20]]
were proposed as more general models of auxiliary channels
for authentication purposes. Specific auxiliary channels are video
by using mobile phone cameras and 2D barcodes [3]], blinking
patterns [28]], face matching [[15]], or laser channels [11]], audio
by relying on ambient audio [29], comparing spoken sentences [4]
or MIDI tunes [5], ultrasound (10|, motion by common move-
ment [6], [7], gestures [[12f], or synchronised button presses [8],
or radio frequency by measuring common environment [9] or
relying on trusted third parties [[14]]. Part of this research is slowly
moving into products. The Bluetooth Simple Secure Pairing
(SSP) [30] and the Wi-Fi Protected Setup (WPS) [31] already
use some of the results on pairing protocols, although initial
implementations will be limited to standard display and keypad
entry methods. Envisaged applications are pairing Bluetooth mice
or keyboards, which currently use empty (and therefore insecure)
passwords, with laptops or desktop PCs. So far, however, these
approaches are completely separate with different cryptographic
protocols and implementations. With the toolkit currently being
extended, we aim to implement as many auxiliary channels as
possible in a common structure so that they are comparable and
interchangeable.

ITI. UNIFIED AUXILIARY CHANNEL AUTHENTICATION
ProTOCOL (UACAP)

The Unified Auxiliary Channel Authentication Protocol
(UACAP) is based on the recent proposal by Laur and Nyberg
called MA-DH [19], but adopts aspects of the MANA III variant
described by Wong and Stajano [25] and an option for pre-
authentication as suggested, among others, by Balfanz et al.
[20]]. Its main part relies on the well-known Diffie-Hellman
(DH) key agreement [32] with a prior one-way commitment
to prevent basic man-in-the-middle (MITM) attacks. The result
of this main phase is a secret session key shared between two
devices. Then, to ascertain that there is no other device involved
(e.g. by accidentally pairing with the wrong device or malicious
MITM attack), the obtained key must be authenticated using the
properties of an auxiliary channel.

Due to its reliance on DH key agreement, UACAP offers perfect
forward secrecy (PFS) concerning attacks on previous (or future)
session keys. However, this means that UACAP can not, in its
current form, be used on devices that are incapable of running
DH during connection establishment, effectively excluding the
lowest-end devices such as RFID tags or some sensor nodes
with significantly restricted CPU resources. For these classes of
devices, protocols relying solely on symmetric cryptography such
as CKP [13]] are more appropriate — at the cost of reduced
resistance against off-line brute-force attacks on weak shared se-
crets. However, most mobile devices are already capable of using
DH key agreement, including Bluetooth headsets, keyboards, and
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comparable low-level auxiliary devices (as evidenced by their
support of Bluetooth SSP).

Depending on the application scenario and properties of the
auxiliary channel, UACAP supports different modes of operation
from a user point of view:

o Input channels allow the user to provide common input to
all involved devices, for example by explicit PIN code entry
(cf. [18]]), synchronous button presses (cf. [8]]), or shaking
them together (cf. [6]], [7]). We need to further distinguish
if the user input can be shielded from others or not:

— IN: Non-confidential input must happen interactively
during the protocol run. A potential use case is applica-
tion scenario 1 presented earlier, i.e. exchange of vCards
between mobile phones; users may be unwilling to hand
over their own devices for a direct contact or common
movement, but can easily exchange and enter 4-digit
PIN codes.

— IC: Confidential “pre-authentication” is possible before
the main protocol part and with no further interaction
on the auxiliary channel. This is the only case in which
the auxiliary channel must be confidential; in all other
protocol cases its authenticity is sufficient. Application
scenarios 4 and 5 lend themselves well to this mode of
authentication from a user point of view, e.g. by shaking
both the mobile phone and the headset together for a
few seconds and therefore providing common (partially
confidential) input.

o Transfer channels support direct, user-mediated (and ideally
human-verifiable) transmission of messages, for example
by capturing a 2D barcode displayed on one device with
the camera of another (cf. [3]]) or audible MIDI sequences
(cf. [5]). We further distinguish according to the auxiliary
channel bandwidth:

— TS: Short transfer (32-64Dbits) must happen interac-
tively during the protocol run. Application scenario 2
is a potential candidate for this type of interaction; the
printer could display a short string, which the user would
then enter on their mobile device.

— TL: Long “pre-authentication” (>160 bits) is possible
before the main protocol part and with no further in-
teraction on the auxiliary channel (non-interactive with
respect to the auxiliary channel). This has the advantage
that, by taking place before any communication on the
main wireless channel, required addresses (for example
MAC or IP addresses) may also be transmitted in the
same pre-authentication message to support easy-to-use
device selection methods. This is well suited for many
use cases, including all of our suggested application
scenarios: a mobile phone could display a 2D barcode
that includes its Bluetooth MAC address and its public
key part when initiating a vCard transfer, or a static 2D
barcode could be printed on the case of a printer, Wi-Fi
router, or Bluetooth headset.

o Verification channels allow the user to compare data from
different devices, for example by reading non-sensical En-
glish sentences (cf. [4]]), comparing random visual art (cf.
[33]]), or MIDI tunes (cf. [5]]). We denote this option:

— V: Explicit user verification can always use “short” bit
strings in the range of 32-64bits over a public, non-
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UACAP OVERVIEW: DIFFERENT OPTIONS FOR KEY VERIFICATION

confidential medium. This is suitable for all use cases in
which both devices feature compatible output devices,
such as application scenarios 1 and 2 or scenarios 4
and 5 if the Bluetooth headset is equipped with a small
display or capable of producing text-to-speech output.

These options depend on the choice of authentication mode
(transfer, verify, or input) and channel type (short or long,
confidential or non-confidential) and may be predetermined by the
respective application scenario (e.g. direct input is not possible
when interacting with non-accessible infrastructure devices like
large, distant screens or projectors). By supporting all options,
UACAP does not limit application designers by enforcing a
particular user interaction mode, but allows to choose those that
best match the application. Central to the protocol is a DH key
agreement that is universal among all choices of modes and
channels.

In the following, we describe UACAP on three levels: First, the
overview in Fig. [T] depicts the logical flow of UACAP, pointing
out the decision points and different options at different steps,
until reaching the final decision; second, Fig. 2| presents a detailed
specification on the level of cryptographic operations and values
exchanged in messages; third, we describe the current reference
implementation in terms of on-the-wire message transfer and
protocol commands in Section [V-A]

A. Protocol Specification

For the formal description in Fig. the following notation
is used: H(m) describes the hashing of message m with some
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secure hash function H, and m||n the concatenation of strings
m and n. SHApRL,-256 is used as a secure hash function, it
is a double execution of the standard SHA-256 message di-
gest to safeguard against length extension and partial-message
collision attacks [34] and is defined as SHApp-256 (m) =
SHA-256 ((SHA-256 (m)) ||m). Trunc-Hash(z||k) is a truncated
hash value over x using key k of particular small size; the
proof of security of MANA IV in [19] is based on the use of
(> 32) bits of h(z|k) for a particular class of hash functions
h (cf. [[19, Sec. 5] and a discussion of practical proposals for
h such as standard hash functions like SHApg,-256). Another
possible implementation is to select the first few (> 32) bits of an
HMAC as suggested in Appendix B of [35]: Trunc-Hash(z|k) :=
HMACy (z) := H (k ® opad||H (k & ipad||z)) with two constants
opad and ipad and a suitable hash function H (e.g. SHA-256).
Com() denotes a cryptographic commitment. Open(c,z,p) is
the opening function of Com/(zx,r): if Com(x,r) = (c,p), then
Open(c,z,p) evaluates to TRUE. A possible implementation is
Com(z,r) := (HMAC,(z),r) where the hash value is verified
in the opening phase after revealing the ephemeral key and a
random nonce r. In [[19]], a CCA2 secure encryption scheme is
recommended to be used as a commitment scheme; the use of
an HMAC based commitment as well as of a hash commitment
based on OEAP padding are discussed as practical alternatives.
The consequence of using a simple hash commitment with
Com(z,r) := (SHAppL-256(x),nil) is that Ms; is empty and
may be omitted. For the Diffie-Hellman parameters we assume
that g is selected from a subgroup of prime order ¢ in a suitable
group. Possible parameters are mentioned in [36]. Subscripts
denote the different sides (a or b for an authentication between A
and B). The notation X is used to point out that a value X has
been sent over an insecure channel and may therefore have been
modified (by transmission error or malicious behaviour).

In Fig. 2] the different options are indicated in the heading of
specific steps and are only executed for the respective channel
type. Mandatory parts are indicated with a grey background.
Channels over which messages are transmitted are either the main
wireless channel (RF), an authentic but “short” (AS), authentic
and “long” (AL), or an authentic and confidential but ‘“short”
(ACS) auxiliary channel. Note that all auxiliary channels must
always provide authenticity, which is the primary reason for their
use in authenticating device interaction.

The protocol execution consists of the following steps:

a) Initialization: This phase is common to all protocol
options (TL, TS, V, IN, IC) and initializes the ephemeral DH
parameters (the domain parameters are assumed to be publicly
known) and identities of the involved parties. The (potentially
ephemeral) identities of the parties A and B, for example their
network addresses, are represented by I, and I, respectively.

b) Pre-authentication: In this phase, pre-authentication data
is used before starting the actual key exchange protocol. This has
the advantage that the actual protocol run can be non-interactive
and thus even more unobtrusive to the user. It also means that the
part requiring user involvement (transfer or input) can happen
at any time before the associated devices start their wireless
interaction. Pre-authentication is only supported in the following
two cases:

¢ TL: Commitments are exchanged over the authentic channel.
Observe that the commitment of party A is sent in Phase 2.
DH session key exchange with pre-commitment. Thus in this

phase only B’s commitment has to be sent. This step is
depicted as I.TL Transfer commitments.

e IC: A common, short secret R is input to both devices on
a confidential channel (I.IC Input secret). R must remain
confidential until the protocol finishes. Such confidential user
input can be sensor data such as the accelerometer time
series resulting from shaking devices together, or the same
password/PIN entered on all devices (and shielded from
others).

c) Diffie-Hellman key exchange with pre-commitment: This
part is mandatory and common to all protocol options. Optional
parameters for specific protocol instances (for example the num-
ber of rounds of an interlock scheme as in the ultrasonic spatial
authentication protocol [[10]) can be transmitted from the initiator
A to the responder B in plain text using the optional value P,.
If not required, it may simply be omitted in the first message
(indicated with the notation [P,]). Having the initiator form and
send a correct commitment before the responder’s ephemeral
DH is initialised, denial-of-service attacks become (marginally)
harder.

The session key K, = Kj is not used during the verification
phase. Ensuring that the correct values X and Y have been
transmitted is sufficient to ensure device authentication. In all
options of the protocol, explicit key validation for the session key
can be achieved via additional encryption of known data with the
session keys to detect errors in the shared key derivation (note
that this is not a security measure, but only for error detection
purposes).

d) Out-of-Band (OOB) key verification: The first part ini-
tializes the components for the key verification while the actual
OOB verification depends on the chosen protocol option.

e TS: Hashes O, and O, are transferred over the ‘“authentic
but short” channel and subsequently compared with the local
ones. If they match on both devices, the key exchange
completes successfully.

e TL: Commitments of the DH parameters have been ex-
changed in the pre-authentication phase. For verification, it
suffices to open those commitments.

e V: Verification hashes O, and O, are displayed to the user
for comparison. This can be done e.g. by displaying hex-
adecimal hash representations, showing MADLIib sentences,
playing MIDI tunes, etc. The user inputs OK if hashes match,
otherwise the protocol fails.

o IN/IC: If the (short) user input values R, and R, can
be guaranteed to remain confidential until the protocol run
finishes, they may be provided to both devices at the same
time and before even starting the protocol, and R, and Ry
may be equal. If R, and R, are only authentic but not
confidential (and if they are “short” in terms of brute-force
attacks), then they must be different and must not be made
public before Step 3 in any case. At this time, they must
be provided to the respective other device (that is, swapping
the different values entered in Step /.I/C), but may be made
fully public.

Only in the IN case, the user must first input R, to device A
and a different Ry to device B. Next, devices compute and
exchange hashes @, and Q. Nonces J, and J, are used to
protect against replay attacks. Steps 3.IN/IC in Figure [2| are
common to the input case, both for confidential and non-
confidential subcases, and must be executed in order. For
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Channel

A (initiator) Message

B (responder)

0. INITIALIZE

Iq € {0,1}128
zep {1...q9— 1}
X = g

1, € {0,1}128
yer {1...9 -1}
Y = g¥

AL

[1.TL: TRANSFER COMMITMENTS]
Mo ,p := (I, Cy)

choose 7 randomly
(Cy,py) := Com(Y,r)

ACS

[1.IC: INPUT SECRET]
INPUT Ry = R

INPUT Ry, = R

RF

2. KEY EXCHANGE (DH) WITH PRE-COMMITMENT

choose 7 randomly
(Cx,px) = Com(X, )

M := (Ia, Cx [, Pal)

RF

~ My = (I, Y)
Kq = H(Y®) -

RF

M3 o = (X, px)

if Open(Cx, X, px)

then Ky, := H(XVY)
else ABORT

RF

[3.TL: OPEN COMMITMENTS]

o Mz = (py)
it not Open(Cy, Y, py)
then ABORT else OK

3. O0OB KEY VERIFICATION

Olq = (Ia|Tp)
OKg, := (X||Y)

oIy, := (TallTp)
OKy := (X|Y)

[3.V/TS: COMPUTE HASHES]
O, := Trunc-Hash(OI,||OK,)

Oy, := Trunc-Hash(OI;||OK})

AS
AS

[3.V: DISPLAY HASHES, USER VERIFY]

OUTPUT O
INPUT OK iff Ogq = Oy

OUTPUT Oy,
INPUT OK iff Oq = Oy,

AS

AS

AS

AS

[3.TS: TRANSFER HASHES]
My 4 = (Oa)

INPUT OK iff B did not ABORT
(without transfer from B to A)
My p, = (Op)

if Oy # Oq
then ABORT
else OUTPUT OK

it Ogq # Oy
then ABORT
else OUTPUT OK

INPUT OK iff A did not ABORT
(without transfer from A to B)

AS

[3.IN: NON-CONF. INPUT]
INPUT R

INPUT Ry,

RF

RF

[3.IN/IC: EXCHANGE HASHES]

Ja €g {0,1}128
Qq = HMACj (OI4||OKq | Ra)

Ms o = (Qa)

M5 p = (Qp)

Jy €r {0,1}128
Qp += HMAC ;, (01, O K} |1 Ry)

AS

[3.IN: NON-CONF. INPUT EXCHANGE]
INPUT Ry,

INPUT Rg

RF

RF

[3.IN/IC: REVEAL NONCES AND COMPARE]

Mg g = (Ja)

Mg p = (Jp)

it HMAC 3 (Ola|OKallRp) # Qp
then ABORT else OK

if HMAC 7 (OIL|IOK | Ra) # Qa
then ABORT else OK

Fig. 2

UNIFIED AUXILIARY CHANNEL AUTHENTICATION PROTOCOL (UACAP) SPECIFICATION
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the confidential case IC, the common secret R = R, = Ry,
has been input to both devices during the pre-auhentication
phase and no further input is required. Only in the IN case,
the user now inputs R; to device A and R, to device B.
Finally, nonces J, and J; are made public, and the hashes
Qq and Q) are verified by A and B.

IV. UACAP SECURITY ANALYSIS

In the following section, we analyse the security properties of
UACAP. Being based on previously suggested protocols, UACAP
carries over their security properties.

We are assuming a Dolev-Yao attacker on the wireless channel;
an adversary attacking the pairing protocol is assumed to have full
control of the wireless channel, that is, they can eavesdrop, delay,
drop, replay, and modify messages. The OOB channel is assumed
to be authentic and stall-free; the adversary cannot replace bits or
arbitrarily delay messages, but may typically eavesdrop without
restriction unless mentioned otherwise (in the IC case, the input
channel is also assumed to be confidential).

The main feature that UACAP adapts from the MANA IV
family is the commitment prior to Diffie-Hellman key agreement
in Phase 2 to prevent brute-force attacks on short authentication
strings. This one-way commitment to ephemeral public Diffie-
Hellman key parts X and Y together with (potentially ephemeral)
identifiers I, and I, used as session identifiers ensures that
any MITM attack must be performed online. An adversary is
reduced to either attacking DH keys once the commitment and
key exchange have been completed (passive attack, which is
currently assumed to be infeasible) or a single, one-off chance
for fabricating the DH key parts in such a way that the (short)
auxiliary messages will still match (active attack). Because of
this protocol design element, all auxiliary messages besides the
pre-authentication case (i.e. Oy and Op) may be “short” in terms
of brute-force key search. With only 32 bits, an adversary is left
with a single 2732 chance to remain undetected during an online
attack, which is acceptable for most scenarios.

a) V: The design of the V option is consistent with the
MANA IV family of protocols, more precisely the MA-DH
protocol in [[19], which provide formal security proofs. MA-DH
is the optimal variant in terms of number of messages. The proof
of security of this protocol in [[19] is based on the assumptions
that

o the hash functionsﬂ used are almost universal and perfect
hash functions. For practical reasons we adopted their choice
of a standard cryptographic hash function (SHAppgy,-256).

e the commitment scheme used is non-malleable. Laur and
Nyberg in [[19] recommend CCA?2 secure encryption and dis-
cuss the use of hash commitment based on OAEP padding;
as a practical alternative they propose an HMAC based hash
commitment. Again, for practical reason we used the latter
variant for an implementation.

V may be susceptible to values of O, and Oy, that are sufficiently
similar for human users to confuse them (but not equal) given a
suboptimal encoding (e.g. hexadecimal strings). This is a well-
known shortcoming of protocols that require users to perform
verification of some representation of bit strings. It is the task of
the auxiliary channel to convey Oq and Oy, to users in a way that

2The actual function used in the protocol can also be regarded as a two-key
MAC.

they are hard to confuse even for values that are different by only
a few bits.

b) TS: The TS option differs from the V option only in the
final verification step, where the values O, and Oy, are exchanged
over the auxiliary channel. Because the message transfer through
the authentic channel is done at the end of the protocol, an attacker
Eve would at least have to find a value z and identity I., such
that Trunc-Hash(O1I4||OK4) = Trunc-Hash(OI.||OK.), where
OK. := (X||Z) and Z = g*. This is considered infeasible under
the assumption of the unique key property of Diffie-Hellman and
the second-pre-image resistance of Trunc-Hash and is therefore
reduced to guessing with a success probability of 2! for I-bit
messages.

c¢) TL: The protocol starts with pre-authentication of both
parties, through the exchange of commitments on an authentic
channel. Commitments are then opened in Phase 3. This option is
consistent with pre-authentication as in the SiB protocol described
in [3, Sec. 4] inheriting its security properties. To impersonate
Alice (A), an attacker Eve would have to either find Alice’s private
key z (i.e. solve a discrete logarithm problem) or find values z and
p such that Open(Cx, g%, p) which is not feasible for a binding
commitment function (even when Alice’s public key is known).

“Pre-authentication” was previously described for SiB [J3] and
by Balfanz et al. [20]]. Because pre-authentication requires transfer
of “long” messages that are effectively secure hashes of public DH
key parts, authentication is secure as long as these commitments
remain so (that is, no second pre-image can be found online
during the protocol run). In practice, this may be realized by
pre-fabricated messages My, b for transferring both the identity
of B (the responder) and the commitment to its public DH
part, e.g. in the form of printed QR codes on the respective
device case, business cards, etc. or infrared beacons replaying
the same message in a loop. In this case, y, Y, and I are static.
Consequently, either I, or z and X need to be ephemeral (chosen
randomly for each protocol run) to protect against offline brute-
force attacks (cf. Section [[V-A) and retain the security properties
of UACAP.

d) IN/IC: From the “VIC” protocol proposal that combines
MANA with SiB [28|], BEDA [8] and Wong and Stajano’s
MANA I variant [25]], we adopt the second round of mutual
commitments (3.IN/IC Exchange hashes) for the ‘“short input”
case. Again, security arguments presented for these protocols
remain valid for UACAP because equivalent messages are used.
In principle, the same argument as for the first commitment
(described above in the TL case) holds:

An attacker would need to guess the short inputs before they
are revealed to successfully masquerade as A or B when the long
nonces J, and J, are revealed for comparison of QQ, and Q.
By adding these nonces to the exchanged hashes, a brute-force
guessing game has the order of 2'2® and only a one-off chance
for guessing R, and R; (equal for the IC case) remains when the
attacker fabricates own nonces as an active MITM.

A. Wong-Stajano attack prevention

The Wong-Stajano attack on MANA III assumes that an
attacker, after running a standard MITM attack on the DH
key exchange, can find a collision for the originally proposed
verification function Trunc-Hashp, (I¢||X|Y||R) respectively
Trunc-Hash g, (I|| X ||Y||R) so that the random values K7 and
K> (used as key for the keyed Trunc-Hash function), which the
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attacker can choose freely, mask the differences in DH keys and
lead to the same verification codes [25]]. When those verifica-
tion functions are implemented using cryptographic hashes, e.g.
HMAC keyed by X, then this attack translates to finding an I-Bit
collision in the hash function, which can always (even assuming
perfect hash functions) be performed as a brute-force search in
O(2") (which is a much simpler attack than the one-off chance
we would like to remain as the only online attack vector). When
transmitting the full hash output (as defined in MANA III), this
seems infeasible. However this attack does not work on UACAP
by inheriting the principal security properties of MA-DH, which
have been improved over the original MANA III proposal that
allowed for the Wong-Stajano attack. A man-in-the-middle C
would, in the general UACAP protocol run — independently of
how the auxiliary message is transmitted —, perform the steps
listed in Figure [3| The adversary function A must then generate
an 2’ so that the truncated MAC suffers from a collision, i.e.
Trunc-Hash x|y (Zal[Iy) = Trunc-Hashx/y (Zal/lp). At this
time, the adversary has access to the components I, I, X', Y,
and attempts to generate Y’ so that the collision occurs. However,
X has not yet been made public, and under the assumption that
ephemeral DH keys are used and thus X is random, this translates
to a guessing game with a one-off chance of 2~ of succeeding.
The difference between MANA III (and the subsequently pro-
posed Wong-Stajano variant) and MA-DH (and MANA 1IV) is the
initial commitment message, which prevents this attack. We point
out that the above argument is not valid in the case where both a
static DH key X and static identities (such as Bluetooth/Ethernet
MAC or long-lived IP addresses) are used. In that case, a collision
of the truncated MAC may be found in a bruteforce manner
after having eavesdropped on an authentication. We therefore
recommend to always use ephemeral DH keys (at least on the
initiator side A) for each instance of running the protocol, as the
identities are more likely to remain static. The only disadvantage
is higher computational cost, especially for mobile devices.

An interesting case arises when auxiliary channels are one-way,
discussed in more detail in [28]], [25]], and [11]]. Authentication
can not be fully mutual in the sense of human verifiability,
but when a remote device can be trusted to correctly perform
comparison of received auxiliary messages and report results
of this comparison, then mutual authentication on the protocol
level is possible. From a usability point of view, one-way human
verification with implicit mutual authentication is the more likely
variant, considering the any human involvement is costly in terms
of scalability of human attention.

V. OPENUAT

OpenUAT aims to be an open-source, ready-to-use toolkit for
authentication in ubiquitous computing applications [17]. The
methods and protocols it implements are selected and designed
to be intuitive and usable for the end user, and the overall toolkit
aims to be modular and compact for the developer. Most parts are
implemented in Java and verified to work on most Java virtual
machines (JVMs) including Java 2 Micro Edition (J2ME) as
available on many off-the-shelf mobile devices and the newer
Android platform. However, protocol implementations use ASCII
commands whenever possible to ease interoperability with other
platforms (as specified below in Section [V-A). A central design
pattern is to use asynchronous, background processing and event

notification. This has the advantage that applications and their
user interfaces are not blocked by potentially lengthy protocol
runs and that events provide a general “hooking” mechanism
to react to various stages of authentication. All core parts are
documented using Javadoc and covered by JUnit tests to ensure
API stability during code changes. In the following, we describe
the main components, pointing out how the UACAP specification
is currently implemented.

A. UACAP Reference Implementation

In the current reference implementation of UACAP in
OpenUAT, the following protocol commands are assumed to be
executed in order. A client (or initiator) A connects to the server
(or responder) B to start a protocol run. Then, following common
Internet protocols, the server starts by sending its greeting:

1) “HELO OpenUAT Authentication”, sent by B, indi-
cates that the client may start its authentication request, i.e.
that the (insecure, in-band) channel the client has connected
to is connected to an OpenUAT instance.

2) “AUTHREQ UACAP-1.0 I, C, [PARAM P...1"
(My) is sent from A to B to transmit the client identity
(e.g. its IP or Bluetooth MAC address or a nonce acting
as an ephemeral identifier for a single interaction), its
commitment and an optional parameter, which may be
free-form and of arbitrary length. Note that the client
requests key exchange and verification using a named
protocol (currently UACAP-1.0) for interoperability with
future versions.

3) “AUTHACK I, Y” (M>) is sent from B to A to respond
with the server identity and the (ephemeral) server public
DH key part.

4) “AUTHACK2 X (Ms3) is sent from A to B to finish the
DH key agreement with the client public key part.

All values are encoded depending on the chosen (in-band) RF
channel. If it supports 8-bit data transmission (such as TCP sock-
ets or Blueooth RFCOMM), the values are transmitted efficiently
as byte arrays in standard network byte order (i.e. big-endian)
with a prepended single byte specifying the array length. If the
channel only supports character (e.g. ASCII) transmission (such
as Jabber chat-messages as transport medium), all values are hex-
encoded and sent as ASCII strings with space as delimiter.

The following protocol messages are dependent on the chosen
authentication option. For the input case:

1) “AUTHINPCOM O, (Ms) provides the second commit-
ment and is symmetrically sent by both A and B. After
correctly receiving these messages, both devices should
exactly at this stage (not earlier and not later) query for
the user input that was previously provided to the other
side.

2) “AUTHINPOPEN J,/,” (Mg) is also sent symmetrically by
both A and B to open the previous commitment and allow
comparison of the user inputs.

For transfer and verification, other messages are transmitted
over auxiliary channels and therefore with different format. The
encoding and specific protocol message depends on the respective
channel.

B. Auxiliary Channels Implementation

Currently, OpenUAT implements several auxiliary channels:
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WONG-STAJANO ATTACK ON MANA III 1S PREVENTED IN UACAP

TABLE I
CURRENTLY IMPLEMENTED AUTHENTICATION METHODS

Channel/ Input Transfer Verity
Mode
Visual - Barcode Compare sentences
transfer Manual string
comparison
Audio Audio Compare melodies
transfer Ultrasound
Motion Shaking Shaking
Keypad BEDA
Manual keypad entry

e 2D barcodes (3], [28]] are used to display the out-of-band
messages on any screen and capture them with a mobile
phone camera. QR codes are generated with an adapted
embedded implementation, while we make use of the Google
ZXing library E] for decoding. The QR code includes at
least 7 Bytes of O4 or Oy in hexadecimal notation, but can
be scaled to transmit the full values in binary form when
sufficient resolution in the “receiver” camera can be assumed
for decoding the larger versions of QR codes.

e Audio as used in HAPADEP [5] is integrated into the
OpenUAT code base. It was initially developed only for
desktop systems, i.e. for Java 2 Standard Edition (J2SE)
but subsequently ported to J2ME/MIDP and restructured
to integrate with UACAP. In transfer mode, O, or Oy is
encoded with a “fast” codec and played as a wave file. The
other device records the sound, decodes it, and verifies that
Oq = Op. In verify mode, applying the “slow” codec results
in a piano-like melody, which should be more pleasant and
easy to recognise by users.

o Ultrasound is used for a verification of Spatial References
using the Interlock* protocol both on RF and ultrasonic
channels [10].

o Manual keypad entry is used for “short” (confidential or
non-confidential) input of R, and Ry.

e Manual string comparison uses MADLIb to create non-
sensical sentences from the short messages O, or Op which
are then compared by the user [4].

37Xing http://code.google.com/p/zxing/

¢ Synchronised button presses are used in an implementation
of BEDA [8] as another form of common input.

e Motion is used to detect when two devices are shaken
together, either in verification mode by exchanging ac-
celerometer time series with an Interlock* protocol or in
input mode by creating keys directly out of sensor time
series [6], [7]. Accelerometer data acquisition has been
implemented for Spark Fun Electronics WiTilt sensors over
Bluetooth, some on-mainboard sensors (e.g. in Thinkpad
and Macbook laptops), for Symbian S60 (through a Python
module which communicates with the Java MIDlet via a
TCP socket), Android, and some Windows Mobile phones
(through a native C# implementation that communicates over
TCP using the same format).

Full source code is available under the terms of the GNU LGPL

at http://openuat.org.

C. User Study

We used OpenUAT to conduct a first experiment towards
comparing the usability of different authentication methods. For
this user study, we selected four different authentication methods:
using the audio and visual channels in transfer and verification
modes. As a result, in transfer cases, the devices automatically
decide whether authentication was successful, while in the verify
mode, this responsibility lies with the user. We call the device
initiating the communication C (client) and the device responding
S (server).

User Study Setup: From the user perspective, the verification
step following automatic key agreement (step 4 in UACAP)
proceeds as follows for the four different authentication methods.
For Barcode transfer, S displays a 2D barcode. The user takes
a picture of the barcode using C. C confirms whether the key
was correctly exchanged. In Audio transfer, S plays a (fast)
tune. C records the tune and confirms whether the key was
correctly exchanged. To Compare melodies, C plays a melody.
Subsequently, S plays a melody. The user compares the melodies
and, if they match, acknowledges that the pairing was successful.
Finally, to Compare sentences, both devices concurrently display
a sentence. The user compares these sentences and, if they match,
acknowledges that the pairing was successful.

We recruited 20 participants for our user study, mainly a group
of fairly young, well-educated and technology-savvy participants
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(19 university students and researchers and one secretary). The
demographics and related background information of the par-
ticipants are summarised in Table Due to the obvious bias
concerning educational background and focus on technology in
our group of participants, absolute numbers on estimated usability
and completion time will likely not be representative of the
average population. However, we argue that the more interesting
findings, namely the comparison of authentication methods in
relation to each other, are still valid and applicable to a larger
population.

TABLE 11
PARTICIPANT PROFILE

Il Yes
C_INo Male
Has a phone

Phone has BT/WiFi

Plays an instrument

Professional musician

0% 25% 50% 75% 100%
18-24 10 %
25-29 60 %
Age 30-34 15 %
35-40 10 %
40 + 5 %
Bachelor 30 %
Education | Masters 65 %
PhD 5 %

Test Procedure: All experiments were conducted in normal
office conditions, namely good lighting conditions and relatively
low noise level. Before starting, participants were asked to fill in
the background questionnaire, which served to learn about their
experience with mobile devices and music related background
and is summarised in Table |m Afterwards, participants were
given a brief overview of the problem. We motivated the need
for secure device pairing and briefly presented the goals of our
study. Although most of the users were already familiar with the
functionality of the devices used, we gave a brief overview of the
basic operations needed to interact with the device (e.g. how to
navigate through the application menu, how to select options and
to take pictures).

We have chosen Scenario 1 and 2 described in sectionI} namely
exchanging vCards and printing a document, to motivate the
participants to perform the tasks. To capture the QR code when
pairing two phones (a Nokia N82 and a Nokia N95 8GB), a focus
lens was attached to the camera of the phone, compensating for
the lack of focus control in J2ME and consequently in the ZXing
QR decoder. The printer was simulated by a laptop. For each
scenario, participants were asked to run the pairing application
with all four authentication methods. No attack was simulated,
i.e. verification sequences always matched. To reduce the learning
bias on test results, half of the users were first presented with
Scenario 1 and the other half with Scenario 2. User actions
and their durations were automatically logged. Afterwards, each
participant filled in a post-test questionnaire form and was given
some minutes of free discussion.

Results: Table summarises the logged data with average
completion times between 13.2seconds (comparing sentences)

and 37.7s (barcode transfer from a phone display) and average
number of tries until successful pairing between 1 (comparing
sentences) and 2.3 (barcode transfer). Figure [] presents user’s
perceived ease of use and level of security, split further between
short-lived and long-lived keys, while Fig. |§| presents preference
ratings. Especially our direct comparison of four authentication
methods produced some interesting findings:

TABLE III
SUMMARY OF THE LOGGED DATA FOR PAIRING 1) TWO PHONES(PH-PH)
AND 2) PHONE AND LAPTOP (PH-LAP)

Average Average Percentage
Method time (sec.) number of tries of failures
Ph-Ph Ph-Lap Ph-Ph Ph-Lap Ph-Ph Ph-Lap
Barcode transfer 37.7 (sd*=14.0) 34.1 (sd=15.3) 2.1 23 5% 15%
Audio transfer 30.7(sd=12.6) 31.9 (sd=14.2) 1.2 1.6 0% 5%
Compare melodies 19.6 (sd=8.3) 20.3 (sd=10.8) 1.3 1.3 20% 10%
Compare sentences 15.6 (sd=7.8) 13.2 (sd=4.5) 1.0 1.0 0% 0%

*sd = Estimated standard deviation

Short term

Long term

W Very secure
[ secure
Nt secure

Barcode Audio  Melody Sentence

Barcode Audio  Melody Sentence

Phone and phone

Phone and laptop
— —

[ —l

JHa

[ Very hard

Barcode Audio  Melody Sentence

Barcode Audio Melody Sentence

Fig. 4
USABILITY AND SECURITY ESTIMATION BY USERS

Prefered method
70% : ‘ : ‘
[ short-lived connection
60%|- [—_JLong-lived connection |

50%[

40%¢

30%¢

20%¢

Percentage of participants

10%r

Barcode  Audio

Melody Sentence

Fig. 5
USER PREFERENCE

Barcode transfer Results show that, even if using the visual
channel in transfer mode resulted in the longest completion
time, it was by far the most preferred and most highly trusted
pairing method. In fact, users showed high acceptance even when
decoding the QR code failed and they had to retry. After filling
in the post-test questionnaire, participants were presented with
the live QR decoder application that is pre-installed on some
Nokia devices (but which could not be integrated with OpenUAT
due do unavailability of open APIs). Seeing how smooth and
fast decoding could be made, this method appealed even more
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to users. These results are in accordance with the background
questionnaire which revealed that taking pictures is the most
widely performed task on mobile phones (by over 80% of the
participants).

Audio transfer Using the audio channel in transfer mode is
the only authentication method in which the user did not have to
assist the devices in any way. However, while overall study results
acknowledged the method as the easiest to perform (see Figure ),
other factors such as the social context made users prefer the
less obtrusive, seemingly more secure visual channel. Several
users suggested replacing audio by ultrasound transfer (already
implemented in OpenUAT, but inherently requiring additional
hardware and visualisation). Another interesting result is the
perceived duration time of the pairing process. Even though the
method using the audio channel takes less time to complete —
in average 15s less than the visual channel — some users were
bothered by the long time needed to decode the audio message
(during which they did not have to conduct any task). On average,
decoding the audio message took 16 s for phone to phone and 13's
for laptop to phone (due to better sound quality on the laptop).

Comparing melodies This is the method that users found the
most difficult and which they least trusted. 35% of the participants
have been playing at least one instrument for 3 to 27 years, with an
average of 12years. Unexpectedly, people with advanced music
experience did not find the melodies easier to compare than
people that do not play any instrument. On the contrary, these
people were more sensitive to sound differences between devices
(even the same tune will sound different when played by different
devices) and trusted this authentication method less. On average,
the tunes were replayed 1.3 times. Although there was no attacker,
in 10% and 20% of the trials, respectively, participants failed to
recognise the tune as being the same. The general impression was
that the sequences were too long. A melody lasted 4 to 5s and
played 7 to 9 notes.

Comparing sentences This was generally considered a secure
method. It had the fastest completion time (13 and 15s), but
required significant user attention. Some participants were both-
ered by the lack of semantics of the sentences (e.g. "DURWARD
FOOLHARDILY DISTORT-ed to BRANCH on a COMMITTEE”).
Because sentences are automatically constructed from a crypto-
graphic token, they do not have any meaning.

VI. CONCLUSIONS

The problem of authenticating spontaneous interactions has
seen significant interest in recent years due to its wide applicabil-
ity in current and future application scenarios. Many approaches
have been suggested independently, and only rarely distributed
with an open, reproducible implementation. In this paper, we
contribute UACAP as a unified cryptographic protocol for device
authentication to use with arbitrary auxiliary channels. We also
contribute OpenUAT as an open source, publicly available toolkit
for authentication and implement some intuitive authentication
methods in a common library based on UACAP. Video, audio,
ultrasound, motion, keypad input, and sentence comparison are
already available for application developers and are easily com-
parable and interchangeable. Further auxiliary channel implemen-
tations are currently being integrated.

It seems important to provide a vast library of different
methods — they should be chosen to best suit the envisaged
application, and direct comparability in rapid prototyping will

assist application designers in doing so. All of our suggested
application scenarios can already be supported by UACAP and
the existing implementations in OpenUAT, and we speculate
that many future mobile applications will also fit within these
categories and therefore immediately benefit from the presented
work. By providing OpenUAT as a toolkit for system builders
(available at http://openuat .org), we hope to both foster
future research and to shorten the gap between research prototypes
and real-world applications.
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